ОБРАЗОВАНИЕ, ЗДОРОВЬЕ, БЕЗОПАСНОСТЬ

Раздел IX

ПСИХОФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ МАЛЬЧИКОВ И ДЕВОЧЕК, ОБУЧАЮЩИХСЯ В УСЛОВИЯХ ТРАДИЦИОННОГО И РАЗДЕЛЬНОГО ОБУЧЕНИЯ

И. В. Пирумова, М. А. Суботов, Р. И. Айзман

В связи с усложнением и интенсификацией образования все более актуальной становится проблема соответствия организации обучения и воспитания возрастно-половым особенностям психического и социального развития учащихся. В настоящее время нет специальной программы раздельного обучения для мальчиков и девочек. При одних и тех же системах и методиках обучения, при одном и том же учителе мальчики и девочки достигают определенного уровня знаний, используя разные стратегии мышления [4].

На современном этапе появились учебные заведения разного типа, а в преподавании используются различные технологии и новации, зачастую не отвечающие психофизиологическим, возрастным, половым, конституциональным особенностям детей, в связи с чем педагогический процесс нередко наносит существенный ущерб здоровью детей и подростков [1].

В последнее время некоторые учебные заведения осуществляют попытки реализации раздельного обучения, в основу которого положены прежде всего психофизиологические различия в развитии мальчиков и девочек [19]. У девочек быстрее созревает левое полушарие, а у мальчиков — правое, поэтому девочки до 10 лет лучше запоминают цифры и решают логические задачи, превосходят мальчиков в речевых способностях. Но в подростковом возрасте мальчики начинают превосходить девочек по левополушарному типу развития. Согласно многочисленным исследованиям, девочки лучше справляются с типовыми заданиями, опираясь на память, используя штампы. У мальчиков страдает исполнительская сторона деятельности, они лучше справляются с заданиями на сообразительность [16]. Общепринято считать возрастом школьной готовности 6—7 лет, независимо от половой принадлежности. Девочки в этом отношении находятся в более «выгодном» положении, так как к первому классу по биологическому возрасту они приблизительно на год старше мальчиков [4]. В то же время процесс школьного обучения никак не учитывает психофизиологические половые различия детей.

Различия в психике мальчиков и девочек прежде всего обусловлены особенностями организации мозга. У мальчиков мозолистое тело — образование, соединяющее два полушария мозга, тоньше, чем у девочек и женщин. Поэтому у лиц мужского пола избирательно включаются в мыслительные процессы левое или правое полушарие. Им трудно сопоставить информацию, обрабатываемую в левом и правом полушарии. У лиц жен-
Психофизиологические показатели мальчиков и девочек...

скога пола способности центров коры обоих полушарий вступать в функциональные межполушарные контакты значительно выше, чем у лиц мужского пола (В. Д. Еремеева, 2003). Однако, несмотря на то, что мозг мальчиков созревает позднее, чем у девочек, это более прогрессивная, более дифференцированная, более избирательная функциональная система. Лучше развитые лобные ассоциации и передний мозг делают мышление мальчиков творческим, объясняя их поисковую активность [11].

Специалисты отмечают, что время, необходимое для вхождения в урок — период врабатываемости — у детей зависит от пола. Девочки после начала занятий быстро набирают оптиимальный уровень работоспособности, мальчикам нужен более высокий темп, и как только начинаются повторения, закрепления, внимание у них ослабевает. Девочкам быстрый темп работы мешает, они лучше работают на письменных технологиях, эффективнее выполняют задания не новые, а типовые, шаблонные. Именно это применяется в школе, где от детей требуют действия по образцу. Это хорошо для девочек, а мальчиков надо подтолкнуть к нахождению принципа решения. Мальчики в такой ситуации стараются уйти из-под контроля взрослого, не подчиниться ему, так как адаптируются мальчики к несвойственным видам деятельности исключительно трудно. И здесь имеют значение не только биологические особенности, но и социальная среда в школе [19].

Традиционное школьное образование подходит лучше для девочек, чем для мальчиков, поэтому девочки, особенно в начальной школе, обучаются успешнее. Следовательно, в наиболее выгодном положении находятся левополушарные девочки, а правополушарным мальчикам не подходят существующие методики и программы. В этой связи правополушарные мальчики наиболее подвержены школьным неврозам [4].

Педагогическая наука накопила большой арсенал различных методов обучения, но используются они в смешанных классах без учета физиологических особенностей детей. При этом предполагается, что они одинаково приемлемы как для девочек, так и для мальчиков. Однако психофизиологические различия заставляют говорить о необходимости дифференцированных методик преподавания для девочек и мальчиков. В настоящее время опыт раздельного обучения еще не вошел в массовую практику. Формальное разделение классов по признаку пола с использованием одинаковых методик обучения без учета психофизиологических особенностей развития детей не позволит решить указанные проблемы.

Нами проведено исследование с целью выявить психофизиологические особенности учащихся в условиях традиционного и раздельного обучения.

Исследование проводилось на базе общеобразовательной школы № 82 г. Новосибирска. В основу структуры и содержания учебно-воспитательного процесса положены принципы раздельного обучения мальчиков и девочек. Было обследовано 105 учащихся 12—14 лет, обучающихся в условиях традиционного (39 чел.) и раздельного обучения с 1-го класса (66 чел.). Полученные данные группированы по полу и типу обучения.

Исследование психофизиологических показателей проводилось с использованием компьютерной программы «Оценка психофизиологического состояния организма человека “Status PF”».

215
Были исследованы следующие параметры:
1. Нейродинамические характеристики:
 — простая зрительно-моторная реакция (ПЗМР) на световой раздражитель;
 — определение уровня подвижности нервных процессов (УФП НП);
 — определение силы нервной системы (теппинг-тест).
По данным теппинг-теста вычислялся показатель динамической работоспособности (ПДР), позволяющий оценить силу нервных процессов (В. И. Рыжков, 1990).
2. Психологические показатели:
 — объем механической памяти;
 — объем смысловой памяти;
 — объем внимания;
 — переключение внимания.
Все результаты обработаны методами вариационной и разностной статистики с применением t-критерия Стьюдента при уровне значимости р ≤ 0,05.

Результаты исследования и их обсуждение
Были проанализированы психофизиологические различия между учащимися одного пола смешанных классов, а также межполовые различия в рамках каждого типа обучения (табл.).
Время простой сенсомоторной реакции является адекватным показателем функционального состояния нервной системы, а также интегральным показателем скорости проведения возбуждения по различным элементам рефлекторной дуги (Пейсахов, 1974). В. И. Дубровский (1991) считает, что время сенсомоторной реакции позволяет судить о функциональном состоянии центральной нервной системы и анализаторов. В. П. Загрядский и З. К. Сулимо-Самуйлю (1976) рекомендуют в качестве психофизиологического критерия, косвенно характеризующего эффективность выполняемой человеком работы, использовать показатели сенсомоторных реакций. Изучение простой зрительно-моторной реакции мальчиков и девочек и их сравнительный анализ позволили установить, что мальчики, обучающиеся в условиях раздельного обучения (РО), при выполнении задания превосходили девочек по скорости реагирования на раздражитель, что свидетельствует о более оптимальном уровне функционирования центральной нервной системы мальчиков (см. табл.).
Определение уровня функциональной подвижности основных нервных процессов проводилось в режиме навязанного ритма, что, по определению В. И. Гусельникова (1976), заключается «...в изменении спонтанной активности коры мозга, в результате чего она приобретает ритмический характер с частотой либо равной, либо в целое число большей или меньшей, чем частота ритмических зрительных (световых) раздражений» [8, с. 213]. Изучение у человека становления данной реакции в онтогенезе показывает, что...характер реакции усвоения ритма на каждом этапе развития определяется взаимодействием возбуждения, поступающего в кору по специфическому и неспецифическому каналам передачи афферентного сигнала, и способностью воспринимающего аппарата коры реагировать на приходящую импульсацию» [17, с. 29]. В наших исследованиях было ус-
Сравнительная характеристика психофизиологических параметров учащихся 12—14 лет

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Раздельное обучение</th>
<th>Традиционное обучение</th>
<th>Достоверность в зависимости от типа обучения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>мальчики</td>
<td>девочки</td>
<td>мальчики</td>
</tr>
<tr>
<td></td>
<td>(n = 39)</td>
<td>(n = 27)</td>
<td>(n = 18)</td>
</tr>
<tr>
<td>ПЗМР:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>среднее время реакции, мс</td>
<td>274 ± 4</td>
<td>300 ± 6**</td>
<td>299 ± 10</td>
</tr>
<tr>
<td>количество ошибок</td>
<td>0,3 ± 0,7</td>
<td>0,4 ± 0,1</td>
<td>0,3 ± 0,1</td>
</tr>
<tr>
<td>ошибка средней</td>
<td>13,5 ± 0,7</td>
<td>14,9 ± 0,7</td>
<td>16,8 ± 1,4</td>
</tr>
<tr>
<td>УФП НП:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>время выхода на минимальную экспозицию, с</td>
<td>34,2 ± 2,9</td>
<td>32,6 ± 2,7</td>
<td>20,5 ± 2,8</td>
</tr>
<tr>
<td>среднее время реакции</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(левая рука), мс</td>
<td>359 ± 6</td>
<td>360 ± 5</td>
<td>398 ± 10</td>
</tr>
<tr>
<td>количество ошибок</td>
<td>10,9 ± 1,1</td>
<td>8,7 ± 1,0*</td>
<td>16,4 ± 2,7</td>
</tr>
<tr>
<td>(левая рука), %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>среднее время реакции</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(правая рука), мс</td>
<td>236 ± 5</td>
<td>312 ± 4***</td>
<td>367 ± 12</td>
</tr>
<tr>
<td>количество ошибок</td>
<td>7,2 ± 0,9</td>
<td>7,4 ± 1,4</td>
<td>13,3 ± 2,5</td>
</tr>
<tr>
<td>(правая рука), %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Тетери-тест:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ПДР</td>
<td>−10,7 ± 0,6</td>
<td>0,3 ± 0,5</td>
<td>−8,6 ± 0,4</td>
</tr>
<tr>
<td>механическая память, балл</td>
<td>5,4 ± 0,2</td>
<td>5,0 ± 0,2*</td>
<td>4,8 ± 0,2</td>
</tr>
<tr>
<td>смысловая память, балл</td>
<td>5,9 ± 0,1</td>
<td>6,0 ± 0,2</td>
<td>5,2 ± 0,2</td>
</tr>
<tr>
<td>объем внимания, балл</td>
<td>4,4 ± 0,2</td>
<td>4,0 ± 0,2</td>
<td>4,6 ± 0,3</td>
</tr>
<tr>
<td>переключение внимания, с</td>
<td>51,5 ± 1,6</td>
<td>54,6 ± 2,2</td>
<td>59,0 ± 2,7</td>
</tr>
</tbody>
</table>

Примечания:
* — достоверные различия между мальчиками и девочками при одном и том же типе обучения;
+ — достоверность между мальчиками в зависимости от типа обучения;
Δ — достоверность между девочками в зависимости от типа обучения.
Степень достоверности по t-критерию Стьюдента:
++(Δ) — р ≤ 0,05; **+(ΔΔ) — р ≤ 0,01; ***+++(ΔΔΔ) — р ≤ 0,001.

tановлено, что в условиях РО скорость реакции правой руки на зрительный раздражитель в режиме навязанного ритма достоверно больше у мальчиков по сравнению с девочками; левой руки — различия реакции не выявились. В то же время девочки в условиях РО, имеющие меньшую скорость реакции на раздражители, при выполнении задания на определение уровня функциональной подвижности нервных процессов допускали достоверно меньше количество ошибок, т. е. имели преимущество в безошибочности выполняемой работы по левой руке, тогда как по правой руке различия были недостоверны.

Согласно исследованиям, проведенным В. Д. Небылицыным (1990), установлена парадоксальная зависимость между временем реакции на раз-

При изучении объема памяти были отмечены достоверно более высокие показатели механической памяти у мальчиков в условиях РО. Анализируя показатели внимания, мы не выявили достоверных межполовых различий при РО.

В условиях традиционного обучения (ТО) сравнительный анализ простоя зрительно-моторной реакции мальчиков и девочек не выявил достоверных, межполовых различий по скорости реагирования на зрительный раздражитель, однако мальчики допускали достоверно меньше ошибок при выполнении задания.

Изучение уровня функциональной подвижности нервных процессов в режиме навязанного ритма позволило установить, что в условиях ТО у девочек уровень функциональной подвижности центральной нервной системы был на более оптимальном уровне, чем свидетельствует более высокая скорость реакции (меньшее время) и достоверно меньшее количество ошибок при выполнении задания.

Изучение показателя ПДР при ТО показало, что сила нервной системы в данных условиях больше у девочек по сравнению с мальчиками. Отмечалась более высокий объем внимания у мальчиков по сравнению с девочками в условиях ТО.

Особый интерес представляло выяснение психофизиологических особенностей у детей одного пола в зависимости от типа обучения. У мальчиков, обучающихся в условиях РО, выявлен более оптимальный уровень функционирования центральной нервной системы по сравнению с мальчиками в условиях ТО, о чем свидетельствует большая скорость реагиро-
вания на зрительный раздражитель. Кроме того, в условиях РО у мальчиков выявлена большая сила нервных процессов и их стабильность, более высокие показатели смысловой и механической памяти и лучшее время переключения внимания.

У девочек в условиях РО отмечался более высокий уровень функциональной подвижности основных нервных процессов по сравнению с ТО, о чем свидетельствует лучшее время реагирования на зрительный раздражитель при УФП НП. Кроме того, при РО у них выявлено меньшее количество ошибок, более стабильная реакция на зрительный раздражитель и более высокий уровень смысловой памяти по сравнению с девочками при ТО.

В условиях ТО у мальчиков установлена более быстрая генерация процессов возбуждения в центральной нервной системе, о чем свидетельствует лучшее время выхода на минимальную экспозицию при УФП НП по сравнению с мальчиками в условиях РО.

Девочки в условиях ТО обладали большей силой нервных процессов по показателям ПДР по сравнению с девочками при РО.

Полученные результаты свидетельствуют о существенных различиях психофизиологических показателей подростков в зависимости от пола и условий обучения.

Выводы:
1. При разделном обучении у мальчиков большинство психофизиологических показателей характеризуются более высокими значениями по сравнению с девочками при таком же типе обучения.
2. В условиях РО у мальчиков нейродинамические показатели находятся на более оптимальном уровне, а психологические характеристики отличаются более высокими показателями по сравнению с мальчиками при ТО.
3. У девочек в условиях РО отмечены лучшие показатели при определении уровня функциональной подвижности и динамичности нервных процессов, а также более высокая стабильность сенсомоторной реакции и больший объем смысловой памяти по сравнению с девочками при ТО.
4. В условиях ТО у мальчиков отмечается более быстрая генерация процессов возбуждения в центральной нервной системе, а у девочек более высокая сила нервных процессов по сравнению с учащимися того же пола в условиях РО.
5. В условиях традиционного обучения отмечается более высокая стабильность нейродинамических и психофизиологических показателей у девочек по сравнению с мальчиками.

Таким образом, при построении учебно-воспитательного процесса необходимо учитывать возрастно-половые, психофизиологические особенности учащихся и режим их обучения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК